**© Chris Port, 2010**

Precognition is theoretically possible. It’s just that no-one has yet worked out a testable theory. By ‘precognition’ we mean the alleged ability to foresee future events. By ‘future’ we simply mean information that hasn’t yet reached us. However, relativity tells us that there is no universal standard time. Every observer carries their own clock, waiting to receive information in their own light cone. For example, if the sun went out ‘now’ (although there isn’t a universal ‘now’) then we wouldn’t know about it for another 8 minutes (the time it takes the sun’s photons to reach us through normal space at light speed). If we had access to a ‘shortcut’ through normal space (e.g. a wormhole) then it would be possible to bring back the information before the event reached us. In effect, this would be precognition (to everyone else, anyway). There is also the curious phenomenon of quantum ‘entanglement’ where twinned particles are mysteriously linked at a distance and are affected instantaneously by the state of each other, even on opposite sides of the universe. Sub-atomic wormholes are (probably) continually appearing and disappearing in the quantum foam. Since consciousness operates at the quantum level (and, in some ways, even creates quantum events by collapsing probability waveforms) it is not inconceivable that some ‘sensitive’ types might be entangled with, and affected by, some types of quantum level events before the information arrives the ‘long way round’. However, since such effects would operate at the Planck time (10 -43 seconds) and scale (10 -35 cm), it is difficult to envisage the information being conceptualized at higher macromolecular levels of thought. Instead, there may be some quantum ‘tilt’ mechanism at work, a kind of neuronal cascade in one direction rather than another. Put in more human terms, precognition may be experienced as a random thought, a premonition, a ‘gut instinct’. We sometimes ‘know’ without being able to explain

This discovery
became known as the "no-cloning theorem": a powerful statement about
the ultimate foundations of quantum theory. An arbitrary or unknown quantum
state cannot be copied without disturbing the original state. No one had ever
recognized that fundamental feature of quantum theory before the cat-and-mouse
game had unfolded between Nick Herbert's thought experiment and his talented
detractors. The fact that quantum theory sets an ultimate limit on the ability
of anyone—including a potential eavesdropper—to seize individual quantum
particles and make copies of them soon became the bedrock for quantum
encryption, and today is at the heart of the flourishing field of quantum
information science.

*how*we know. However, it is unclear whether this ‘knowledge’ might relate to an*actual*future event or merely a*possible*one (an ‘alternate’ reality in a multiverse of possibilities). Precognition may, ultimately, be a lucky guess, a self-fulfilling prophecy, or a self-delusion.*** * * * * * ***

**Addendum**

**31**

^{st}July 2012

*The Faster-Than-Light Telegraph That Wasn’t***by David Kaiser,**

*Scientific American*, May 29, 2012
In 1981
physicist Nick Herbert leveraged strange features of quantum mechanics to
design a superluminal communication system. The quest to uncover its subtle flaw
led to a profound new understanding of the quantum world.

Herbert's FLASH system—the acronym stood for
"first laser-amplified superluminal hookup"—employed a source that
emitted pairs of photons in opposite directions. The scheme focused on photons'
polarization—that is, the directions along which their associated electric
fields oscillated. The photons could be plane-polarized, with the electric
fields oscillating either horizontally (H) or vertically (V). Or the photons
could be circularly polarized, with the electric fields tracing out helical
patterns in either a right-handed (R) or left-handed (L) orientation.

Physicists had
long known that the two flavors of polarization—plane or circular—were
intimately related. Plane-polarized light could be used to create circularly
polarized light, and vice versa. For example, a beam of H-polarized light
consisted of equal parts R- and L-polarized light, in a particular combination,
just as a beam of R-polarized light could be broken down into equal parts H and
V. Likewise for individual photons: a photon in state R, for example, could be
represented as a special combination of states H and V. If one prepared a
photon in state R but chose to measure plane rather than circular polarization,
one would have an equal probability of finding H or V: a single-particle
version of Schrödinger’s cat.

In Herbert's
imagined set-up, one physicist, Alice ("Detector A" in the
illustration), could choose to measure either plane or circular polarization of
the photon headed her way [1]. If she chose to measure plane polarization, she
would measure H and V outcomes with equal probability. If she chose to measure
circular polarization, she would find R and L outcomes with equal probability.

In addition,
Alice knows that because of the nature of the source of photons, each photon
she measures has an entangled twin moving toward her partner, Bob. Quantum
entanglement means that the two photons behave like two sides of a coin: if one
is measured to be in state R, then the other must be in state L; or if one is
measured in state H, the other must be in state V. The kicker, according to
Bell's theorem, is that Alice's choice of which type of polarization to measure
(plane or circular) should instantly affect the other photon, streaming toward
Bob [2]. If she chose to measure plane polarization and happened to get the
result H, then the entangled photon heading toward Bob would enter the state V
instantaneously. If she had chosen instead to measure circular polarization and
found the result R, then the entangled photon instantly would have entered the
state L.

Next came
Herbert's special twist. Before the second photon made its way to Bob's
detectors, it entered a laser gain tube [3]. Lasers had been around for 20
years by that time, and as the leading textbooks routinely touted, the output
from a laser had the same polarization as the input signal. That suggested that
the laser should release a burst of photons in the complementary state to
whatever Alice had found at her side. Bob could then split the beam [4],
sending half toward a detector to measure plane polarization [5] and half
toward a detector to measure circular polarization [6].

If Alice chose
to measure circular polarization and happened to find L, then the entangled
photon heading toward Bob would instantly go into the state R prior to entering
the laser gain tube. Out of the laser would burst a stream of R photons heading
toward Bob. He could then send half the beam toward a detector to measure plane
polarization and half toward a detector to measure circular polarization. In
this case, Herbert concluded, Bob would find half the photons in state R, none
in state L, and a quarter each in states H and V. In an instant, Bob would know
that Alice had chosen to measure circular polarization. Alice's choice—plane or
circular polarization—would function like the dots and dashes of Morse code.
She could signal Bob simply by alternating her choice of what type of
polarization to measure. Bob could decode each bit of Alice’s code faster than
light could have traveled between them.

As GianCarlo
Ghirardi, Tullio Weber, Wojciech Zurek, Bill Wootters and Dennis Dieks each
clarified, Herbert’s device would not actually allow superluminal signaling. A
photon in state R, for example, would exist as a combination of equal parts H
and V. Each of those underlying states would be amplified by the laser. Hence
the output would be a superposition of two states: one in which all the photons
were in state H, and the other in which all the photons were in state V, each
with a probability of 50 percent. Bob would never find half in H and half in V
at the same time, just as physicists would never find Schrödinger's cat to be
both half-dead and half-alive upon opening the box. Thus, Bob would receive only
noise no matter what setting Alice had chosen on her end. Moment by moment,
Bob's detectors would flash H with R or V with L or H with L and so on, in
random combinations. He would never find H and V with R, and hence he would
have no way to determine what Alice had been trying to tell him. Quantum
entanglement and relativity could coexist after all.

The Power of Replication – Bems Psi Research

ReplyDeletehttp://www.sciencebasedmedicine.org/index.php/the-power-of-replication-bems-psi-research/